代写范文

留学资讯

写作技巧

论文代写专题

服务承诺

资金托管
原创保证
实力保障
24小时客服
使命必达

51Due提供Essay,Paper,Report,Assignment等学科作业的代写与辅导,同时涵盖Personal Statement,转学申请等留学文书代写。

51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标
51Due将让你达成学业目标

私人订制你的未来职场 世界名企,高端行业岗位等 在新的起点上实现更高水平的发展

积累工作经验
多元化文化交流
专业实操技能
建立人际资源圈

混合随机因子表达诱导T辅助细胞的相关分析--悉尼Paper代写范文

2016-11-18 来源: 51Due教员组 类别: Paper范文

留学悉尼Paper代写范文:“混合随机因子表达诱导T辅助细胞的相关分析”,这篇论文主要描述的是在对早期的T辅助细胞TH1和TH2两种分化形态进行研究后发现,它们之间存在在高水平的排斥表达,在祖细胞谱系特异性转录因表达分子的诱导下,T辅助细胞进行了分化,其中T淋巴细胞的作用就是保卫免疫细胞对抗病原体,这种相互的作用是哺乳动物中细胞间的共同战略,缓解缓冲对于细胞的表达。

 paper代写,T辅助细胞,留学生作业代写,随机因子,论文代写

We explored the early differentiation of naive CD4 T helper (Th) cells into Th1 versus Th2 states by counting single transcripts and quantifying immunofluorescence in individual cells. Contrary to mutually exclusive expression of antagonistic transcription factors, we observed their ubiquitous co-expression in individual cells at high levels that are distinct from basal-level co-expression during lineage priming. We observed that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in these single cells. This cell-to-cell variation in the cytokine expression during the early phase of T helper cell differentiation is significantly larger than in the fully differentiated state. Upon inhibition of cytokine signaling, we observed the classic mutual exclusion of antagonistic transcription factors, thus revealing a weak intracellular network otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process CD4 T cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.

During the development of a multicellular organism, the progenitor cells, which have the potential to become any of several different cell lineages with specialized functions, commit and differentiate into one particular lineage. This differentiation of progenitors is driven by the induction of lineage-specific transcription factors, molecules that regulate gene expression. This process is often mediated by extracellular signaling molecules, including a class of molecules called cytokines that can bind to cell surface receptors, activating and/or repressing transcription factors. Here we explored the early differentiation of naive T helper (Th) cells, an important class of T lymphocytes that help effector immune cells to defend the body against various pathogens. We measured both mRNA and protein levels of cytokines and transcription factors in individual cells. In particular, mRNA levels were measured with single-molecule resolution. Contrary to the expression of only one set of lineage-specific transcription factors, we observed ubiquitous high-level co-expression of antagonistic transcription factors in individual cells. We found that cytokines are expressed only in a small subpopulation of cells, independent from the expression of transcription factors in individual cells. When cytokine signaling is inhibited, each cell expressed only one of the antagonistic transcription factors at high levels. This reveals a weak intracellular network that is otherwise overruled by the strong signals that emanate from extracellular cytokines. These results suggest that during the early differentiation process T helper cells acquire a mixed Th1/Th2 state, instructed by extracellular cytokines. The interplay between extracellular and intracellular signaling components unveiled in Th1/Th2 differentiation may be a common strategy for mammalian cells to buffer against noisy cytokine expression.

Introduction

A multipotent progenitor cell can differentiate into a particular lineage by turning on the expression of a lineage-specific transcription factor, which coordinates the expression of a defined set of target genes. Numerous examples of such toggle-switch-like cell fate decisions have been observed in the differentiation of hematopoietic cells [1]. For example, common myeloid progenitor cells differentiate into granulocyte-monocyte progenitor versus megakaryocyte-erythrocyte progenitor cells based on expression of PU.1 versus Gata1 [2]; naive CD4 T cells differentiate into Th1 versus Th2 driven by the expression of Tbet or Gata3 [3]–[6]. Antagonistic transcription factors are therefore believed to be expressed exclusively in the pertinent cell types, or co-expressed at basal levels in hematopoietic progenitors prior to commitment to “prime” the cells for rapid deployment of transcription factors to execute a particular lineage program [7]. For instance, common myeloid progenitors can co-express low levels of PU1 and GATA1 during lineage priming [8]–[12], though their expression is mutually exclusive in the fully committed state [7].

In addition to transcription factors that reside within the cell, the signaling network governing cell differentiation often comprises extracellular components, such as cytokines that can bind to cell surface receptors leading to activation and/or repression of transcription factors. In many previous studies, where the goal has been attaining a relatively homogenous population of differentiated cells, high concentrations of cytokines were added to the culture media to bias the cellular decision process toward one particular cell fate [2],[3],[6],[13].

In this work, we studied gene regulation during the early stage of cell differentiation to delineate the interplay between extracellular cytokines and intracellular transcription factors in single cells, using CD4 T helper cells as a model system. Contrary to previous studies where cellular fate was biased artificially [2],[3],[6],[13], we sought to avoid this bias by exploring the spontaneous differentiation of naive CD4 T cells in the absence of exogenously added cytokines.

Tbet, encoded by Tbx21, is the master transcription factor of Th1 differentiation associated with production of the hallmark cytokine IFNγ [3], whereas Gata3 is the master transcription factor of Th2 differentiation associated with IL4 production [5]. In terminally differentiated individual CD4 T cells, the expression of Tbx21 and Gata3 is mutually exclusive [14],[15]. This is attributed to positive feedback loops and cross-inhibitory interactions in the regulatory network (Figure 1A). This network consists of two types of interactions: those that depend on cytokine signaling and those that are cytokine-independent and involve only intracellular players including transcription factors. Specifically, Tbet activates Ifng [16], and extracellular IFNγ can induce Tbx21 via receptor signaling [17]. Tbet also induces itself independently of signaling via cytokine receptors [18]. Similarly, Gata3 activates Il4 [19],[20] and extracellular IL4 can induce Gata3 [21]. Furthermore, Gata3 can be auto-induced independently of signaling via cytokine receptors [19],[22]. Finally, Tbet silences Il4 [16], Gata3 silences Ifng [23],[24], and Tbet blocks the function of Gata3 through direct protein–protein interactions [25], leading to cross-inhibitory interactions.

Results

High-Level Co-expression of Tbx21 and Gata3 in Individual Cells

Without exogenously imposed Th1- or Th2-biasing cues, naive CD4 T cells, essentially expressing zero copies of Tbx21 and Gata3 transcripts, turned on expression of both Tbx21 and Gata3 simultaneously in individual cells after activation (Figure 1B–D). Simultaneous up-regulation of Tbx21 and Gata3 occurs very rapidly within 24 h, in contrast to co-expression of Tbx21 and Gata3 observed weeks after activation from naive cells followed by a reprogramming experiment [27]. Furthermore, distinct from basal co-expression in lineage priming [8]–[12], co-expression of Tbx21 and Gata3 are at high levels, such that the mean number of Gata3 transcripts per cell at 48 h is comparable to fully differentiated Th2 cells [28].

To further assess the expression levels of Tbx21 and Gata3 that we observed under non-biased condition, we compared to cells that were treated under standard polarizing conditions with supplements of IFNγ and IL4 as well as neutralizing antibodies against opposing cytokines as previously described [16]. While polarized cells express Tbx21 and Gata3 in a mutually exclusive manner, we found that the expression of the up-regulated transcription factor is comparable to the high-level co-expression in cells under non-biased condition (Figure 1E,F), indicating that that the cells under non-biased condition produce IFNγ and IL4 by themselves. Furthermore, supplementing both IFNγ and IL4 into the non-biased cell culture did not increase the expression of Tbx21 and Gata3 further (unpublished data), indicating that the amount of IFNγ and IL4 that CD4 T cells produce has already reached saturation for signaling.

In addition, high-level co-expression of Tbx21 and Gata3 in individual cells is a robust phenomenon observed over a large range of seeding cell density (Figure S3). Interestingly, the median stoichiometry between Tbx21 and Gata3 expression was 1:1 until 24 h after activation, but Gata3 levels continued to increase after 24 h while Tbx21 levels decreased (Figure S4). As activation time increases, the culture system presumably accumulates more Th2-favoring cytokines. Since most of the significant changes in gene expression occurred within this 48 h period, we focused our analyses on this period in subsequent experiments.

To demonstrate that transcript counts serve as a good proxy for protein levels, we performed immunofluorescence against Tbet or Gata3 simultaneously with smFISH. Transcript counts and protein levels showed strong correlations in individual CD4 T cells, with a Pearson's correlation coefficient R of 0.59 (p<10?44) for Tbet and 0.85 (p<10?84) for Gata3 (Figure 2). In addition, translational efficiency, measured by the ratio of immunofluorescence intensity over transcript count, remained constant as a function of activation time.

As cytokine molecules are produced and secreted to the cell culture media, a uniform cytokine milieu is established because diffusion of cytokine molecules is not rate-limiting (Figure S13), leading to up-regulation of transcription factors ubiquitously. It is interesting to note that although the production of cytokine molecules is highly heterogeneous amongst cells, the expression of transcription factors as a read-out is less variable because of averaging effect from mixing cytokine in the extracellular environment. The interplay between extracellular cytokines and intracellular transcription factors may be a common strategy for mammalian cells to buffer transcriptional noise that is otherwise intrinsic to the cells.

While cytokine expression appears to be decoupled from transcription factors in individual cells, we wondered how cytokine expression is regulated at the population level—for instance, how a cell population turns on IFNγ but not IL4 when cultured under Th1-favoring conditions with supplement of antibody against IL4. We quantified the expression of Ifng in cells treated with anti-IFNγ and the expression of Il4 in cells treated with anti-IL4. We found that the number of cytokine-expressing cells and hence the mean of cytokine transcripts decreased when neutralizing antibody is added to the cell culture (Figure S23). Therefore, when cytokines are sequestered, not only the respective transcription factor gets down-regulated, but the expression of the cytokine itself is also down-regulated.

This observation suggests that although the expression of a cytokine is not positively correlated with the expression of its respective transcription factor in individual cells, the expression of cytokine in the entire cell population is still in concert with the expression level of the transcription factor. We postulate that transcription factor may be largely responsible for de-condensing the cytokine locus during early activation of CD4 T cells. While switching an inactive gene to the active state is a stochastic process in individual cells, the average of gene activation events is still deterministically controlled by the amount of transcription factors. As cell differentiation progresses, the activation of cytokine genes eventually becomes more ubiquitous and depends on the local concentration of active transcription factors, leading to higher positive correlation between a cytokine gene and the respective transcription factor in fully differentiated cells .

In the light of our work, it will be interesting to delineate the underlying molecular mechanisms governing cytokine gene expression. In addition, given sufficient technological advances, it will be interesting to perform time-lapse experiments to track stochastic cytokine expression in individual cells over a time-course to visualize how these rare cytokine-producing cells arise and evolve over time. It will also be helpful to study the single-cell transcriptome of these cells to quantify how different these cells are from other cells. Insights from such experiments will shed light on the interplay between extracellular cytokines and the intracellular transcription factor on the fate specification of single cells. We note that mixed Th1–Th2 phenotypes were also observed concurrently by two other groups, using different experimental approac.51due留学教育原创版权郑重声明:原创留学生作业代写范文源自编辑创作,未经官方许可,网站谢绝转载。对于侵权行为,未经同意的情况下,51Due有权追究法律责任。

51due为留学生提供最好的服务,亲们可以进入主页了解和获取更多悉尼paper代写范文 提供美国作业代写以及paper辅导服务,详情可以咨询我们的客服QQ:800020041哟。-xz

上一篇:US virtual reality technology 下一篇:Respiratory infectious disease